• pic1
  • pic2
  • pic3
Все разделы
Сокращения в описаниях судов
Общепринятые сокращения
Обозначения РМРС
Единицы cистемы СИ
Внесистемные единицы
Характеристики судов
Навигация
Радиосвязь
Судовые силовые установки:
  - ДВС
  - паровые котлы
  - электрооборудование судов
  - cудоремонт
  - холодильные установки
  - вспомогательные механизмы
  - горюче-смазочные материалы
  - материаловедение
Теория корабля
Безопасность
Классификация грузов
Оговорки в коносаментах
Сведения о контейнерах
Образцы судовых документов
Charters parties & B/L forms
Инкотермс
Ссылки морских организаций

Судовые паровые котлы

Топочные устройства

Судовые котлы оборудуют топочными устройствами, обеспечивающими факельный процесс сжигания жидкого топлива. Форсунки, являющиеся частью топочного устройства, предназначены для подачи распыленного топлива в топку, а с помощью ВНУ перемешиваются частицы топлива с воздухом. Форсунки с ВНУ (иногда называемые горелками) могут иметь фронтовое и потолочное расположение. Преимущественное распространение получило фронтовое расположение, при котором форсунки и ВНУ размещают на передней стенке топки котла, называемой передним фронтом.

Отдельные современные высокоэкономичные главные котлы оборудуют форсунками и ВНУ с потолочным расположением в верхней части топки. При этом создаются условия для более высокой интенсификации факельного процесса, газовоздушный поток получает более естественное движение сверху вниз, факел распределяется почти по всему объему топки. У главных и некоторых вспомогательных котлов устанавливают несколько форсунок с ВНУ, их число зависит от паропроизводительности котла.

К форсункам предъявляются следующие основные требования: простота устройства, надежность действия, хорошее распыливание топлива, большая глубина и легкость регулирования подачи, малый расход энергии, удобство замены и очистки, невысокая стоимость, возможность автоматического регулирования при безвахтенном обслуживании.

В судовых котлах в зависимости от способов распыливания топлива могут применяться форсунки следующих типов: с воздушным и паровым распыливанием топлива, механические невращающиеся (центробежные) и вращающиеся (ротационные), паромеханические.

Форсунки с паровым или воздушным распыливанием топлива конструктивно идентичные и могут распыливать топливо с помощью пара и воздуха благодаря кинетической энергии их струи, то есть работать по принципу пульверизатора. Эти форсунки просты по устройству, легко регулируются, но для их действия требуется безвозвратный расход пара или сжатого воздуха. Поэтому такие форсунки в настоящее время можно встретить лишь у единичных котлов вспомогательного флота старой постройки.

Широкое распространение в топочных устройствах котлов морских судов получили механические центробежные форсунки, в которых распыливание топлива осуществляется благодаря достаточно высокому давлению топлива, которое создается специально установленным топливно-форсуночным насосом.

Механические центробежные форсунки подразделяются на нерегулируемые и с регулируемым сливом. Следует отметить, что это деление весьма условное: можно изменять подачу у обеих форсунок. К нерегулируемым относят форсунки с малой глубиной регулирования и такие, у которых изменение подачи связано с их выключением, выемкой из топочного устройства и заменой распыливающего элемента.

Механические центробежные форсунки, различающиеся компоновкой распыливающих элементов, дополнительно иногда подразделяют на форсунки со сменными и постоянно работающими на всех режимах распылителями, что обусловлено в основном условиями эксплуатации котла. Механическая регулируемая центробежная форсунка отечественных вспомогательных котлов (рис. 1) состоит из корпуса 6 с ручкой 7, ствола 5, представляющего собой толстостенную трубу со штуцером на конце, стопорной втулки 4, распределителя (сопла) 3, распыливающей шайбы 2 и головки 1. Топливо от топливно-форсуночного насоса по отверстиям в корпусе и каналу ствола через сверления в стопорной втулке и распределителе поступает к распыливающей шайбе. Распыливающая шайба у данной конструкции имеет четыре канала 8, расположенных тангенциально к окружности вихревой камеры. По ним топливо устремляется к центру и в вихревую камеру 9, где интенсивно раскручивается. Из нее топливо входит в топку через центральное отверстие 10 в виде вращающегося конуса мелко распыленных частиц.

Механическая нерегулируемая центробежная форсунка

Рис. 1. Механическая нерегулируемая центробежная форсунка.

Поверхности соприкосновения распыливающей шайбы 2 и распределителя 3 тщательно обрабатывают, полируют и при сборке головки прижимают одну к другой стопорной втулкой 4.

Распыливающие шайбы изготавливают из высоколегированных хромоникелевых или хромовольфрамовых сталей. В зависимости от подачи форсунки число тангенциальных каналов может быть от двух до семи.

Форма факела форсунки зависит от отношения fk/fo, в котором fk -суммарная площадь всех тангенциальных каналов, fo — площадь сечения центрального отверстия. Чем меньше это отношение, тем угол конуса распыливания будет больше, а длина факела меньше.

Шайбы изготавливаются обычно под номерами. Каждый номер соответствует определенной подаче, которая указывается в технической документации. Иногда на шайбах указываются числа, соответствующие значениям диаметра центрального отверстия и отношения fk/fo, при этом иностранные фирмы наносят условные обозначения в виде индексов (рис. 2). Например: буква Xобозначает, что передняя торцевая стенка шайбы изготовлена плоской, буква W — сферической формы; цифра слева — условный номер сверла для изготовления центрального отверстия, цифра справа — отношение fk/fo, увеличенное в 10 раз.

Распыливающая шайба

Рис. 2. Распыливающая шайба.

Нерегулируемые механические центробежные форсунки других типов мало отличаются от рассмотренной. Их отличие проявляется в основном в конструкциях распределителей и способах закрепления распыливающих шайб; отдельные конструкции имеют подвод пара для продувки распылителя.

Регулирование действия таких форсунок осуществляют посредством изменения давления подаваемого топлива или смены распылителей. Механические центробежные форсунки обеспечивают при температуре подогрева мазута 90 — 110° С хорошее распыливание, если давление топлива перед ними составляет 1,6 — 2,0 МПа. В отдельных установках в зависимости от нагрузок давление топлива достигает 4 МПа. При давлении ниже 0,8 МПа качество распыливания резко ухудшается, а это значит, что снижение подачи посредством уменьшения давления топлива ограничено.

Изменение подачи заменой распылителей создает существенные неудобства в процессе эксплуатации. В больших котлах при использовании механических нерегулируемых центробежных форсунок диапазон регулирования расширяют, устанавливая несколько форсунок. В этом случае можно применять различные режимы работы, отключая одну или несколько форсунок.

Существенно расширяют диапазон регулирования форсунки с регулируемым сливом, у которых расход топлива может изменяться от 100 до 20% при неизменном начальном давлении топлива в магистрали. Слив может осуществляться из вихревой камеры распыливающей шайбы, а иногда и из соплового распределителя.

В форсунке со сливом излишков топлива из вихревой камеры распылителя (рис. 3) топливо от топливно-форсуночного насоса по кольцевому каналу вокруг трубы 1 поступает в распределитель (сопло) 2, а из него по тангенциальным каналам в распыливающей шайбе 3 в вихревую камеру. Часть топлива из вихревой камеры через центральное отверстие в распределителе попадает через трубу 1 в сливной канал. Подача форсунки регулируется изменением открытия клапана, расположенного за сливным штуцером. При полностью закрытом клапане фор-сунка работает как нерегулируемая с максимальной подачей.

Механическая центробежная форсунка с регулируемым сливом

Рис. 3. Механическая форсунка с регулируемым сливом.

Однако такие форсунки более сложны по конструкции, менее удобны в эксплуатации, а из-за большого количества отводимого от них в специальную емкость горячего топлива повышается пожароопасность системы. С целью снижения температуры сливаемого топлива часто применяют установки для его охлаждения, что, естественно, усложняет и удораживает системы. Кроме того, при перекачке излишков топлива увеличивается расход энергии на привод топливно-форсуночного насоса.

В настоящее время на котлах стали широко применять более совершенные комбинированные паромеханические форсунки, основными преимуществами которых являются значительно большая глубина регулирования подачи при сравнительно невысоких давлениях, создаваемых топливно-форсуночными насосами (0,6 — 3 МПа), при хорошем качестве распыливания топлива.

На нагрузках, близких к полным, паромеханическая форсунка работает как чисто механическая центробежная. На сниженных нагрузках, при которых для обеспечения хорошего распыливания автоматически включается подача пара давлением примерно 0,15 — 0,2 МПа, форсунка работает как паромеханическая. Расход распыливающего пара у паромеханической форсунки составляет примерно 0,05 — 0,15 кг/кг топлива, что для котлов существенного значения не имеет, учитывая кратковременную работу паромеханической форсунки на сниженных нагрузках. Кроме того, при периодических продувках распылителей паром уменьшаются их засорение и коксуемость.

У вспомогательных котлов, которые могут длительное время работать на сниженных нагрузках, безвозвратную потерю пара, затрачиваемого на распыливание топлива, можно отнести к недостатку паромеханической форсунки.

В паромеханической форсунке с комбинированной распыливающей головкой (рис. 4) топливо от топливно-форсуночного насоса по кольцевому каналу ствола 7 поступает в головку форсунки 6 и затем по сверлениям 5 в распределитель 4. Из распределителя, как и в обычной центробежной форсунке, топливо по тангенциальным каналам в распыливающей шайбе 2 поступает в вихревую камеру 3 и, раскрутившись в ней, направляется в топку.

Паромеханическая форсунка

Рис. 4. Паромеханическая форсунка.

Рассмотрим конструкцию еще одной разновидности паромеханической форсунки. При снижении расхода топлива, когда вследствие уменьшения давления распыливание ухудшается, по центральной трубе 8 подается пар, который попадает в тангенциальные канавки дополнительной шайбы 1. Выходящее из шайбы 2 механически распыленное топливо дополнительно подхватывается закрученным быстродвижущимся потоком пара в шайбе 1 и вместе с ним по кольцевому среднему каналу между шайбами 1 и 2 поступает в топку. Помимо рассмотренного варианта, существует ряд других конструктивных исполнений распыливающих головок паромеханических форсунок при сохранении общего принципа их работы. Встречаются паромеханические форсунки без распыливающих шайб. Например, у форсунки «Бабкок» (рис. 5) вместо распыливающей шайбы имеется сопло 2 с семью цилиндрическими отверстиями. Сопло прижимается с помощью гайки 5, навертываемой на ствол 6. Топливо через каналы 4 поступает в сопловые отверстия 1, куда по каналам 3 также подается пар. Распыливание топлива осуществляется при использовании энергии совместного удара струи топлива и пара, движущихся с большой скоростью.

Головка паромеханической форсунки без распыливающих шайб

Рис. 5. Головка паромеханической форсунки без распыливающих шайб.

Некоторое распространение получили (преимущественно на судах, построенных в ГДР) механические вращающиеся (ротационные) форсунки, составляющие конструктивно одно целое с топочным устройством.

Форсунки такого типа надежны в эксплуатации, имеют большую глубину регулирования, в них отсутствуют засоряющиеся каналы и отверстия. Ротационные форсунки обеспечивают надежное регулирование подачи в диапазоне нагрузок от 5 до 100% при хорошем качестве распыливания топлива, поступающего с низким давлением (0,05 — 0,15МПа).

Недостатками ротационной форсунки являются сложность конструкции, повышенный шум в работе, а также необходимость поддержания с помощью дымососов разрежения в топке на всех нагрузках котла, если на котле установлено несколько ротационных форсунок. Последнее обусловлено тем, что при осмотре, очистке или ремонте одной из форсунок без выключения остающихся работающих и ее извлечении образуется достаточно большая амбразура, которую закрывают съемным стальным щитом. При работе дымососа им создается разрежение в топке, поэтому щит, защищающий амбразуру от факела форсунки, будет прижат. При этом исключается выброс пламени из топки от работающих форсунок.

Механическое распыливание топлива в ротационных форсунках осуществляется под действием центробежной силы, создаваемой распылителем, вращающимся с большой частотой вращения (примерно 5000 об/ мин), а регулирование — путем изменения открытия клапана, подводящего топливо к форсунке.

Существует несколько типов ротационных форсунок, принципиально отличающихся лишь видом привода (паровой, воздушный, электрический) и способом подвода воздуха.

Ротационная форсунка с приводом от электродвигателя показана на рис. 6. Стакан 10 вместе с полым валом 8 приводится во вращение от электродвигателя 4 через ременную передачу 5. Топливо через штуцер 6 подается в неподвижную трубу 7, расположенную внутри полого вала 8, и из нее попадает на внутреннюю поверхность вращающегося стакана. Под действием центробежных сил топливо прижимается к внутренним стенкам стакана; благодаря их небольшой конусности пленка топлива движется к выходной кромке. Вместе с полым валом вращается насаженное на него колесо вентилятора 3, который через патрубок 9 забирает воздух и нагнетает в кольцевую щель 11 под давлением примерно 5 кПа.

Ротационная форсунка

Рис. 6. Вращающаяся (ротационная) форсунка.

Основной поток воздуха (приблизительно 90%) для горения топлива поступает в топку из межобшивочных каналов каркаса от котельного вентилятора. Каналы 1 оборудованы регулирующими шиберами 2.

Имеются конструкции ротационных форсунок, в которых весь воздух поступает только от котельного вентилятора. Внешний вид вспомогательного котла, оборудованного топочным устройством с ротационной форсункой, показан на рис. 7.

Вспомогательный котел с ротационной форсункой

Рис. 7. Вспомогательный котел, оборудованный топочным устройством с ротационной форсункой.

Воздухонаправляющие устройства служат для подачи необходимого количества воздуха в топку котла. От работы ВНУ зависят качество распыливания топлива, его смесеобразование, процесс горения и в конечном счете общая экономичность котла. ВНУ бывают с раздельным подводом первичного и вторичного воздуха (в основном у ротационных форсунок) и с совместным подводом воздуха, а также с неподвижными и с профильными поворотными лопатками. Последние встречаются лишь у отдельных конструкций главных котлов. Наибольшее распространение получили ВНУ с неподвижными лопатками и с совместным подводом воздуха.

Топочное устройство отечественных вспомогательных котлов типов КВВА-2,5/5 и КВС-30 показано на рис. 8. ВНУ смонтировано в воздушном коробе котла, в который подается воздух от котельного вентилятора. ВНУ состоит из двух неподвижных конусообразных колец 5 и 7, между которыми установлены лопатки 18, расположенные под определенным углом, для закручивания выходящего воздушного потока. Для регулирования подачи воздуха установлен кольцевой шибер 6, перемещение которого осуществляется в горизонтальном направлении при помощи тяг 12, подключенных к исполнительному механизму системы автоматики. В местах выхода тяг наружу установлены манжетные уплотнения 10. Основная часть воздуха из короба поступает в топку через каналы между лопатками 18, а некоторая часть — через четыре трубы 1 турболизатора, что способствует лучшему смесеобразованию.

Топочное устройство котлов КВВА и КВС

Рис. 8. Топочное устройство котлов КВВА-2,5/5 и КВС-30.

Трубы 1 смонтированы в пазах фурмы 3, выложенной из фигурного кирпича. Пазы и зазоры между фигурными кирпичами заполнены шамотной обмазкой 4. Для установки форсунки строго по оси ВНУ предусмотрена форсуночная труба 8 с диффузором 2. На наружный конец форсуночной трубы навинчен башмак 13 с штуцером для подвода топлива и пара, зафиксированный стопорным винтом. Паромеханическая форсунка 17 вставляется в трубу 8 и прижимается своим корпусом к каналам в башмаке при помощи стопора струбцинного типа, который состоит из откидной скобы 14 и стопорного винта 15 с ручкой 16.

Топочное устройство снабжено смотровыми устройствами, в одном из которых установлен фотоэлемент 11, служащий для контроля за горением форсунки. В случае срыва факела фотоэлемент дает сигнал на срабатывание электромагнитного клапана, установленного на топливной магистрали, перекрывающего подачу топлива к форсунке. В смотровой трубе 9 имеются отверстия для прохода воздуха из короба котла, охлаждающего стекла фотоэлемента.

Часто в форсуночных трубах делают захлопки 2 (рис. 9). При выемке форсунки 3 (например, для чистки распыливающей шайбы) торец форсуночной трубы закроется захлопкой, благодаря чему предотвращается выброс горячего воздуха из короба. Следует помнить, что при выемке форсунки, прежде чем отвернуть струбцинный стопор, необходимо перекрыть подвод топлива и пара.

Топочное устройство с захлопкой

Рис. 9. Топочное устройство с захлопкой и подвижным диффузором.

Диффузор 1, предназначенный для защиты корня факела от задувания и поддержания необходимой температуры при воспламенении топлива, может быть подвижным. Его перемещение осуществляется тягой 5, которая закрепляется стопором 4.

Широкое применение у вспомогательных котлов транспортных судов получили автоматизированные топливно-форсуночные агрегаты, объединяющие в своем составе основные элементы топочного устройства, вентилятор, топливный насос и оборудование, обеспечивающее безвахтенное обслуживание котла. Работают они в позиционном режиме «Включено-выключено».

В качестве примера рассмотрим агрегат типа «Монарх», которым часто оборудуются вспомогательные котлы отечественных дизельных судов, построенных за рубежом (рис. 10).

Устройство агрегата типа Монарх

Рис. 10. Устройство автоматизированного топливно-форсуночного агрегата типа "Монарх".

На рис. 11 показана схема агрегата «Монарх», предназначенного для работы на высоковязком топливе. Управление агрегатом осуществляется от электросистемы программного механизма, обеспечивающего последовательное выполнение операций в зависимости от сигналов реле давлений, установленных на котле. Например, если давление в котле понизится до заранее установленного значения, включится электродвигатель 3 и вместе ним начнут работать закрепленные на его валу вентилятор 4 и топливный насос 15. Одновременно включится также электрический топливоподогреватель 13. Первые 20 — 30 с (в зависимости от настройки системы) проводится вентилирование топки, а топливный насос в это время через имеющийся у него золотник будет забирать топливо из расходной цистерны по трубопроводу 18 через фильтр 17 и прокачивать его частично на слив и частично через трубу 7, полость сопла 9, открытый электромагнитный клапан 12 и трубу 16 во всасывающую магистраль.

Схема агрегата типа Монарх

Рис. 11. Схема агрегата типа "Монарх".

По достижении температуры топлива около 95° С и окончании вентилирования топки включится трансформатор зажигания 6 и закроется клапан 12. Поскольку слив топлива от сопла 9 прекратится, топливо под воздействием своего давления отожмет поршенек запорного клапана сопла 9, направится к распылителю и воспламенится от дуги электродов 8. Фотоэлемент 5, восприняв свет от факела, отключит трансформатор. Если зажигания не произойдет, например из-за попадания воды в топливо или по другим причинам, то по сигналу от фотоэлемента прекратится подача топлива, а программный механизм повторит цикл включения с предварительным вентилированием топки. При повторном срыве зажигания система остановится и включит сигнализацию. Если расход пара из котла большой и дав-ление ниже настроечного значения, заданного программным механизмом, дополнительно включается сопло 10, для чего открывается электромагнитный клапан 11, а исполнительный механизм (ИМ) 1 повернет заслонку 2 для увеличения подачи воздуха. Воспламенение топлива из сопла 10 происходит от факела работающего сопла 9. При давлении в котле на 0,01 МПа ниже рабочего сопло 10 отключается, заслонка возвращается в исходное положение, а при достижении рабочего давления агрегат выключается. Для визуального контроля за пламенем на корпусе имеется смотровой глазок 14.

Кроме агрегата типа «Монарх», широко используются схожие с ним по компоновке и принципу действия агрегаты «Ойлон», «Унитерм», «Викинг», «Сааке» и др.