• pic1
  • pic2
  • pic3
Contents
Abb. used in vessel's descriptions
Bill of Lading Clauses
Examples of ship’s certificates
Charters parties & B/L forms
RMRS symbols
Maritime organizations links
Below documents are in
RUSSIAN language only:
Common abbreviations
SI measurement units
Miscellaneous units
Ship's characteristics
Navigation
Communication
Power and propulsion systems:
  - internal combustion engines
  - steam boilers
  - electrical equipment
  - repair
  - refrigeration plants
  - auxiliary engines
  - fuel and lubes
  - materials science
Ship's theory
Security
Classification of cargoes
Information on containers
Incoterms

Ship’s theory

Остойчивость

Остойчивостью называется способность судна, отклоненного от положения равновесия, возвращаться к нему после прекращения действия сил, вызвавших отклонение.

Наклонения судна могут происходить от действия набегающих волн, из-за несимметричного затопления отсеков при пробоине, от перемещения грузов, давления ветра, из-за приема или расходования грузов.

Наклонения судна в поперечной плоскости называют креном, а в продольной — дифферентом. Углы, образующиеся при этом, обозначают соответственно θ и ψ

Остойчивость, которую судно имеет при продольных наклонениях, называют продольной. Она, как правило, довольно велика, и опасности опрокидывания судна через нос или корму никогда не возникает.

Остойчивость судна при поперечных наклонениях называется поперечной. Она является наиболее важной характеристикой судна, определяющей его мореходные качества.

Различают начальную поперечную остойчивость при малых углах крена (до 10 — 15°) и остойчивость при больших наклонениях, так как восстанавливающий момент при малых и больших углах крена определяется различными способами.

Начальная остойчивость. Если судно под действием внешнего кренящего момента МКР (например, давления ветра) получит крен на угол θ (угол между исходной WL0 и действующей WL1 ватерлиниями), то, вследствие изменения формы подводной части судна, центр величины С переместится в точку С1 (рис. 5). Сила поддержания yV будет приложена в точке C1 и направлена перпендикулярно к действующей ватерлинии WL1. Точка М находится на пересечении диаметральной плоскости с линией действия сил поддержания и называется поперечным метацентром. Сила веса судна Р остается в центре тяжести G. Вместе с силой yV она образует пару сил, которая препятствует наклонению судна кренящим моментом МКР. Момент этой пары сил называется восстанавливающим моментом МВ. Величина его зависит от плеча l=GK между силами веса и поддержания наклоненного судна: MВ = Pl =Ph sin θ, где h — возвышение точки М над ЦТ судна G, называемое поперечной метацентрической высотой судна.

 

Действие сил при крене судна

Рис. 5. Действие сил при крене судна.

 

Из формулы видно, что величина восстанавливающего момента тем больше, чем больше h. Следовательно, метацентрическая высота может служить мерой остойчивости для данного судна.

Величина h данного судна при определенной осадке зависит от положения центра тяжести судна. Если грузы расположить так, чтобы центр тяжести судна занял более высокое положение, то метацентрическая высота уменьшится, а вместе с ней — плечо статической остойчивости и восстанавливающий момент, т. е. остойчивость судна понизится. При понижении положения центра тяжести метацентрическая высота увеличится, остойчивость судна повысится.

Так как для малых углов их синусы приближенно равны величине углов, измеренных в радианах, то можно записать МВ = Рhθ.

Метацентрическую высоту можно определить из выражения h = r + zczg, где zc — возвышение ЦВ над ОЛ; r — поперечный метацентрический радиус, т. е. возвышение метацентра над ЦВ; zg — возвышение ЦТ судна над основной.

На построенном судне начальную метацентрическую высоту определяют опытным путем — кренованием, т. е. поперечным наклонением судна путем перемещения груза определенного веса, называемого крен-балластом.

Остойчивость на больших углах крена. По мере увеличения крена судна восстанавливающий момент сначала возрастает, затем уменьшается, становится равным нулю и далее не только не препятствует наклонению, а наоборот, способствует ему (рис. 6).

 

Диаграмма статической остойчивости

Рис. 6. Диаграмма статической остойчивости.

 

Так как водоизмещение для данного состояния нагрузки постоянно, то восстанавливающий момент изменяется только вследствие изменения плеча поперечной остойчивости lст. По расчетам поперечной остойчивости на больших углах крена строят диаграмму статической остойчивости, представляющую собой график, выражающий зависимость lст от угла крена. Диаграмму статической остойчивости строят для наиболее характерных и опасных случаев нагрузки судна.

Пользуясь диаграммой, можно определить угол крена по известному кренящему моменту или, наоборот, по известному углу крена найти кренящий момент. По диаграмме статической остойчивости можно определить начальную метацентрическую высоту. Для этого от начала координат откладывают радиан, равный 57,3°, и восстанавливают перпендикуляр до пересечения с касательной к кривой плеч остойчивости в начале координат. Отрезок между горизонтальной осью и точкой пересечения в масштабе диаграммы и будет равен начальной метацентрической высоте.

При медленном (статическом) действии кренящего момента состояние равновесия при крене наступает, если соблюдается условие равенства моментов, т. е. МКР = МВ (рис. 7).

 

Определение угла крена

Рис. 7. Определение угла крена от действия статически (а) и динамически (б) приложенной силы.

 

При динамическом действии кренящего момента (порыв ветра, рывок буксирного троса на борт) судно, наклоняясь, приобретает угловую скорость. Оно по инерции пройдет положение статического равновесия и будет продолжать крениться до тех пор, пока работа кренящего момента не станет равной работе восстанавливающего.

Величину, угла крена при динамическом действии кренящего момента можно определить по диаграмме статической остойчивости. Горизонтальную линию кренящего момента продолжают вправо до тех пор, пока площадь ОДСЕ (работа кренящего момента) не станет равной площади фигуры ОБЕ (работа восстанавливающего момента). При этом площадь ОАСЕ является общей, поэтому можно ограничиться сравнением площадей ОДА и ABC.

Если же площадь, ограниченная кривой восстанавливающих моментов, окажется недостаточной, то судно опрокинется.

Остойчивость морских судов должна отвечать требованиям Регистра, в соответствии с которыми необходимо выполнение условия (так называемого критерия погоды): К=Mопрмин / Мднmax 1» где Mопрмин — минимальный опрокидывающий момент (минимальный динамически приложенный кренящий момент с учетом качки), под действием которого судно еще не потеряет остойчивость; Мднmax — динамически приложенный кренящий момент от давления ветра при наихудшем в отношении остойчивости варианте загрузки.

В соответствии с требованиями Регистра максимальное плечо диаграммы статической остойчивости lmax должно быть не менее 0,25 м для судов длиной 85 м и не менее 0,20 м для судов более 105 м при угле крена θ более 30°. Угол заката диаграммы (угол, при котором кривая плеч остойчивости пересекает горизонтальную ось) для всех судов должен быть не менее 60°.

Влияние жидких грузов на остойчивость. Если цистерна заполнена не доверху, т. е. в ней имеется свободная поверхность жидкости, то при наклонении жидкость перельется в сторону крена и центр тяжести судна сместится в ту же сторону. Это приведет к уменьшению плеча остойчивости, а следовательно, к уменьшению восстанавливающего момента. При этом чем шире цистерна, в которой имеется свободная поверхность жидкости, тем значительнее будет уменьшение поперечной остойчивости. Для уменьшения влияния свободной поверхности целесообразно уменьшать ширину цистерн и стремиться к тому, чтобы во время эксплуатации было минимальное количество цистерн со свободной поверхностью жидкости.

Влияние сыпучих грузов на остойчивость. При перевозке сыпучих грузов (зерна) наблюдается несколько иная картина. В начале наклонения груз не перемещается. Только когда угол крена превысит угол естественного откоса, груз начинает пересыпаться. При этом пересыпавшийся груз не вернется в прежнее положение, а, оставшись у борта, создаст остаточный крен, что при повторных кренящих моментах (например, шквалах) может привести к потере остойчивости и опрокидыванию судна.

Для предотвращения пересыпания зерна в трюмах устанавливают подвесные продольные полупереборки — шифтинг-бордсы либо укладывают поверх насыпанного в трюме зерна мешки с зерном (мешкование груза).

Влияние подвешенного груза на остойчивость. Если груз находится в трюме, то при подъеме его, например краном, происходит как бы мгновенный перенос груза в точку подвеса. В результате ЦТ судна сместится вертикально вверх, что приведет к уменьшению плеча восстанавливающего момента при получении судном крена, т. е. к уменьшению остойчивости. При этом уменьшение остойчивости будет тем больше, чем больше масса груза и высота его подвеса.